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That all conventional thermoelastic experiments on elastomers are founded on an irrational premiss is a 
striking claim made recently (Polymer 1984,25 (Commun.) 2 13) and one which we now examine in detail using 

tension as well as torsion techniques. In tension it is shown that K (the temperature coefficient of r$ may be 
obtained from c1 (the temperature coefficient of Ji, the relaxed compliance) which may be determined by 
performing two stepfunction experiments. In the first a T- jump is performed at constant force F, 
(T -A7’)+T, and the extension of the specimen Af(t) observed as a function of time t after the T-jump: in the 
second a force-jump, F+(F + AF), is performed at T, and A\(t) observed as a function of time after the F-jump. 
The derived quantities (Al(t)/AT), and (Al(t)lAP at different values of F are related by, 

it is thus possible to find a if /?“, the temperature coefficient of the volume, is known. Plots of 
(Al(t)/AT), - 1@“/3) against F(Al(t)/AF), were linear for arbitrary F and arbitrary t. In torsion the analogous 
equation is 

in which Ae(t) is the specimen rotation produced at time t after a T-jump or after a torque jump, T+(T + AI-). 
Experiments were performed on a copolymer of acrylonitrite and butadiene (Tgf -7°C). Linearity was 
observed between (Ae(t)/AT), and r(AO(t)/Ar),. The values of a obtained from tenslon and torsion agree to 
within 7%; this error is experimental. It is shown that the conventional analysis due to Shen fails. This failure is 
due to the use of the Gaussian model and to incorrect treatment of the viscoelastic effects: all existing values of 
K andfJ’in the literature are systematically in error for the same reasons. The magnitude of the error will 
depend primarily on the temperature, increasing as T approaches the glass transition. 

(Keywords: creepg rubber; T-jump; tbermoviscoelasticity) 

INTRODUCTION theory of rubber elasticity, which gives, 

In a recent paper’ we proposed a new method for 
measuring IC, the temperature coefficient of the unper- 
turbed mean-square end-to-end vector length of a 
macromolecule, 

in which rf is the mean-square end-to-end vector length of 
the set of v crosslinked molecules which compose the 
specimen, which is of volume V at temperature T; k is 
Boltzmann’s constant. Since T is proportional to V2’3 it 
follows that, 

dlnz 

IC=dT 
(1.1) 

The method is based on a determination of a, the 
temperature coefficient of JL, the relaxed shear com- 
pliance of the elastomer, 

dln J;f 

u=dT 
(1.2) 

The relationship between 0: and K is derived from the 

(1.3) 

1 B” 
K=“+T--3 (1.4) 

in which 8” is the temperature coefficient of the volume, 

dln V 
P”=F 
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The new method is based on the premiss that viscoelastic 
(or hysteresis) effects preclude a determination of JR r but 
that, paradoxically, its temperature coefficient ~ can be 
determined very accurately. The new method follows 
Shen 2, and Wolf and Allen a in favouring the creep 
technique over stress-relaxation, but differs greatly from 
the procedure used by these authors who follow the 
traditional t ime-temperature programme 4 for eliminat- 
ing viscoelastic effects. 

The physical basis of the new experiment is as follows 1. 
Consider an elastomer which has been stressed for a long 
period of time t', say 100 ks, by a constant shear stress a. 
Because it is an elastomer, the vast majority of the 
molecular relaxation processes will have complied with 
the stress, and the specimen will have deformed by 
viscoelastic processes to a strain approaching the equilib- 
rium strain, which is a JR r. Note that it is most unlikely that 
the strain will equal a JR r and, to compound the problem, 
there is no procedure available to the experimentalist to 
decide if the strain has attained equilibrium or not. The 
occurrence of a deviation is due to the fraction--albeit a 
small fract ion--of  molecular processes with relaxation 
times greater than 100 ks. Nevertheless the major fraction 
of relaxation processes--roughly those with relaxation 
times below l0 ks--will have deformed completely to 
equilibrium. The specimen strain when observed over a 
time of say 0.1 or 1 ks will appear almost stable and little 
creep will be observable: we term this a state of pseudo- 
equilibrium. The new determination of ~ requires two 
separate experiments, both initiated from this state of  
pseudo-equilibrium. In one a small step-function is placed 
on the temperature and in the other a small step-function 
is placed on the stress. 

The step-functions in temperature and stress are re- 
stricted in magnitude so that the generated strain changes 
are small enough to be governed by the equations of linear 
viscoelasticity s. The step function in stress, a-~(a+Aa),  
stimulates the specimen to creep, as indicated in Figure 1. 
The state of pseudo-equilibrium is indicated at a-b: the 
time adopted to achieve this, t', is of no quantitative 
consequence: it has merely to be long enough so that in the 
forthcoming step-function experiment, the zero at a-b is 
sufficiently stable that the induced deviation from it, 
(Ay(t)), can be measured over the experimental timescale 
(-~ 1 ks). The creep increment at time t after the stress- 
jump, AT(t), is a fraction, Xr(t)(O < XT(t) < 1) of AT~o: 

AToo =AaJR r, (1.6) 

A?(t)=ATooXr(t) (1.7) 

Ay(t) moves from zero and approaches AT~ asympto- 
tically as Xr(t) moves with t from 0 to 1 (Figure 1). This 
stress-jump experiment is conducted isothermally at T. 

The companion experiment is one in which a creep 
strain is generated at the same temperature T by a T- 
jump. The specimen is brought to pseudo-equilibrium at 
temperature ( T - A T )  (a-b, Figure I) under stress a: the 
stress is maintained at tr and a T-jump, ( T - A T ) ~ T ,  
causes the specimen to commence to creep at T. The creep 
strain has the same time dependence as the stress-triggered 
creep because both creep processes occur at T: AT(t) is given 
by equation (1.7) with 

A), oo = ¢ro~A T J~ (1.8) 

.g: 

Ay(t) 

o -b  

L 

0 Time t 

t 
Stress-jump 

o r  

T-  jump 

Figure 1 Illustration of a shear creep pulse A),(t) observed over a time 0 
to t (t ~ 1 ks) and stimulated by a shear stress-jump. The specimen is 
placed initially under a constant stress tr for a long period of time, t', until 
the primary creep (at a-b) is negligible over the experimental time scale, t: 
a stress-jump, o--*(a+Aa) then stimulates the secondary creep A~,(t) 
which can be measured precisely without zero-shift when t < t': from 
equations (1.6), (1.7), Ay(t)=xr(t)AT~o and A ~ = A a J  T. For a creep 
pulse AT(t ) stimulated by a T-jump, the constant stress a is placed 
on the specimen at ( T - A T ) :  at time t' a T-jump, (T-AT)--.T, 
generatTes Ay(t): from equations (1.7), (1.8), Ay(t)=xT(t)A~ and A)% = 
a~ATJR. Since the creep occurs in both experiments at T, XT(t) and 
JR are the same thus determining ct, equation (1.9) 

A~,(t) moves asymptotically from zero to A%o as Xr(t) 
moves from 0 to 1: these results (equations (1.7) and (1.8) 
hold for t < t'. It follows from equations (1.6) to (1.8) that if 
the values of Ay(t) are obtained in the two experiments at a 
particular value of t, then the ratio of the two strains is 

aaATJ~XT(t) aaAT 

AaJ~Xr(t) Aa 
(1.9) 

This is the kernel of the experiment stated in its simplest 
form: the ratio of the observed values of A),(t) in the two 
experiments conducted at T and assessed at the same time 
t, yields 0t. In the experiments the most experimentally 
convenient values of t lie close to 1 ks: the value of t' is of 
no significance provided it is much greater than t. 

The reader may well ask why, in view of the voluminous 
literature concerned with this vital topic and the consider- 
able variety of experimental methods which have been 
adopted 6'7, yet another should be proposed. The answer 
!s that the earlier methods, different although they may be 
m matters of detail, are all based on a false elimination of 
the viscoelastic perturbation. There is another source of 
error also, the use of the equation of the ideal Gaussian 
chain, which is a traditional source of debate and which 
we will be required to tackle in this paper. But the 
overriding error in all earlier work is the elimination of the 
viscoelastic perturbation by the use of an experimental 
programme based on what may be called an exhaustion 
model1. In this, the specimen is defo rmed for a long time at 
the highest temperature to be used until such time as the 
creep rate is 'sensibly negligible'. It is then cooled and 
measurements taken, the assumption being that equilib- 
rium has been achieved at this highest temperature and 
viscoelastic effects thereby exhausted; the specimen is then 
presumed to pass through equilibrium states and yield 
equilibrium data at the lower temperatures. 

48 POLYMER, 1986, Vol 27, January 



Determination of x by temperature induced creep in tension and torsion: N. G. McCrum 

In summary the traditional experimental analysis con- 
tains three errors: 

(1) Equilibrium is not attained initially at the highest 
temperature. 

(2) Equilibrium is not attained at lower temperatures 
on the cooling and heating cycle. 

(3) The Gaussian network theory does not hold for all 
elastomers, and may not hold for any to within the 
required precision. 

Of these it is probably (2) which is the most systemat- 
ically formidable, since errors (1) and (3) may, in particular 
instances, not lead to substantial inaccuracy: unfor- 
tunately there is no measure of what this inaccuracy may 
be. A major virtue of the new method is that the procedure 
remains valid in the unlikely event that the specimen 
attains equilibrium at all temperatures: that is, the method 
is fail-safe and is rational and precise whether or not 
equilibrium is attained. 

In this paper we extend the new method from shear to 
tension. It seemed correct to establish the technique in 
both shear and in tension and to compare the values of 
obtained by the two methods. This provides a particularly 
rigorous and exacting test of the theory and experimental 
procedures. Opportunity was taken to improve the 
precision of the shear method by improvements to the 
apparatus and by changing the experimental conditions: 
this meant increasing the value of Ay by doubling the 
value of AT, making many repeat experiments using the 
same AT at different values of shear stress, and by 
doubling the value of t (from 0.6 to 1.2 ks) at which the two 
values of Ay(t) are recorded. It also seemed correct to re- 
formulate the theory so that both shear and tension could 
be rendered within a single framework and this is 
presented in the following section. The major part of the 
work concerns the tension method since this is a simpler 
experiment--the observable effects in torsion are con- 
siderably smaller--and because, although this was not 
part of our programme, x and fUfcan be determined over 
a range of extension ratios. 

THEORY 

We examine the effect of viscoelastic creep on the 
interpretation of a thermo-elastic experiment both in 
torsion and in tension. In both experiments it is not 
possible when changing the temperature to keep the stress 
constant since the dimensions change unavoidably and at 
constant torque (or force) the stress changes unavoidably. 
This will necessitate a slightly more complex treatment 
than the simpler constant stress constraint which led to 
equation (1.9). Only experiments at constant (atmos- 
pheric) pressure are discussed so all differentials will be 
made with the pressure held constant. 

Torsion 
Consider a thin walled tube of radius r, wall thickness s 

and length 1 twisted by a constant torque F around its 
axis. A thin-walled tube is not the favoured geometry for 
experimental reasons, but as a model for the theory it 
yields an essential insight. I f  the tube is elastic and of 
compliance J then the relationship between the describing 
parameters, 0 the angle of twist of one end with respect to 
the other, the shear strain in the tube y, and the shear stress 
tr generating the rotation is 

The shear stress is, 

so that 

F 
a = 2rcr2s (2.2) 

0 (l~( F "]j (2.3) 

The specimen responds elastically to the stress a: we 
examine the effect of a small step-function change in tr 
which is developed (see equation (2.2)) by (i) pulsing the 
torque from F to (F + AF) or by (ii) pulsing (r2s) from (r2s) 
to [(r2s)+A(r2s)]. The latter step-function is generated 
unavoidably when the temperature is pulsed, 
(T -AT)~T .  If the tube is isotropic and of volume 
thermal expansion coefficient fl°, then 

A(r2s) = (r2s)fl°A T (2.4) 

Note that for an isotropic material (I/r), equation (2.3), 
does not change when the temperature is pulsed. If both 
AF and AT are imposed simultaneously then, from 
equations (2.2) and (2.4), 

Aa AF A(r2s) AF 
m m  

a F r2s F 
fl°AT (2.5) 

It then follows from equations (2.1) and (2.5) that, the step- 
function in 0, A0, produced by the pair of small step- 
functions AF and AT, is 

(2.6) 

So far we have assumed that the change in temperature 
(T - AT)-> T produces no change in elastic compliance J. 
If J does depend on temperature and if the temperature 
coefficient is ~, then reformulation of equation (2.6) shows 
that 

J 
(2.7) 

In the normal thermoelastic experiment a step function is 
imposed on the temperature at constant F in which case, 

A0 l F ct 

The other observable is the AF induced change A0 at 
constant T, which, from equation (2.7), is 

(2.9) 

It then follows from equation (2.8) and (2.9) that, 

( ~ f ) r =  / A 0 \  o A0 r t ~ ) r [ ~ _ f l  ] (2.10) 

A plot of (AO/AT)r against F(A0/AF)r derived from 
experiments at different values of F should yield a straight 
line of slope [ct-fl°]. If fl° is determined, or otherwise 
known, then ct is determined. 
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We now determine the relevance of equation (2.10) to a 
thin-walled elastomeric tube which is linearly viscoelastic: 
we will show that the equation holds provided (AO/AT)r 
and (A0/AI-) r are determined at the same time after the 
torque-jump and T-jump. If a constant torque F is 
applied at t = 0 the shear stress (equation (2.2)) generates a 
rotation and shear strain which depend on t, the time after 
the imposition of F; instead of equations (2.1) and (2.3) we 
have, 

(!> (!>, 

For a linear viscoelastic solid the creep shear compliance 
is s, 

jr( t  ) = j r  + (Jr - J~)Xr(t) (2.13) 

J r  and J r  are the unrelaxed and relaxed compliances, 

xr(t) = ~ ~r(lnz)(1 - exp( -  t/T))dlnz (2.14) 

o n  

I d  

- - 0 0  

• r(lnz) is the distribution of relaxation times 5. Equation 
(2.13) can be simplified for an elastomer (for which 
JR/Ju ~ 103) by neglecting J r  in comparison with j r ,  so 
that, 

jr(t) = j rxr ( t )  (2.15) 

This equation holds for all values of t accessible in step 
function experiments which, in practice, certainly means 
for all values of t greater than approximately 1 ms. xr(t)  
takes values, 

0~<xr(t)~< 1 

when xr(t)  = 1 (for t = 0o) the compliance observed in the 
creep experiment yields JR T, the relaxed compliance of the 
elastomer. 

To illustrate the argument we consider the temperature 
induced changes in tr and J r  separately. Consider first a 
specimen with JR independent of temperature (ct = 0) but 
with a finite thermal expansion coefficient/3 °. Assume that 
it has been stressed for an infinite time (we later relax this 
constraint) by torque F so that from equation (2.11), 

From this equilibrium state ifa step function is placed on 
the stress, a to (a+Aa),  the specimen begins to creep 
again. The stress jump may be generated by a torque- 
jump, AF, or by a temperature jump, AT. If the AF and 
AT-jumps are imposed at the same time (t=0), the 
rotation produced by the consequent stress-jump is at 
time t later, 

AO(t)=(~)AtrJ(t) (2.17) 

This is the time dependent creep occurring at T produced 

by a temperature jump AT, ( T - A T ) - - . T  and by a 
simultaneous torque jump of AF. 

We now relax the constraint of a temperature inde- 
pendent JR. The T-jump induces a change from j r  -At to 
J r  and this is of magnitude for small AT, o~ATJ r. The 
viscoelastic elements are in equilibrium with the stress at 
(T -AT) :  following the T-jump to T they are no longer in 
equilibrium and they commence to move from one 
equilibrium strain (a Jr -~r) to the other (a Jr). They do 
this, of course, at temperature Tby the creep process. This 
adds another term to the creep at Tyielding (see equations 
(2.7) and (2.18)), 

(2.19) 

Two experiments are required to determine 0t. In the first, 
a T-jump is imposed, (T - AT)--, T, at constant torque and 
from equation (2.19) this yields, 

AO(t) I F o r r 
(2.20) 

In the second, a F-jump is imposed isothermally at T and 
from equation (2.19) this yields, 

A T  r \ r J \ 2 r r r s /  

It follows from equations (2.20) and (2.21) that, 

= _ / 3 o ]  (2.22) 

The reader will recall that this attractive equation has 
been derived for a linear viscoelastic specimen which has 
been stressed to equilibrium (t '= o~) before the imposition 
of the step-functions (AT or AF). We now argue that 
equation (2.22) .holds also for t' >> t, t being the time after 
the step-function over which A0(t) is observed. 

When observations are taken over a time t (say, 
0 < t < 1 ks), then the viscoelastic processes under obser- 
vation are those in the range 0 to 10 ks. If the stress is 
applied for a time t' >> t, then these short relaxation times 
will be in equilibrium. The specimen may not be in 
equilibrium as a whole, but the relaxation times to be 
probed in the step-function experiments will be in equilib- 
rium. It follows that the response to step-functions, either 
AT or AF, will be independent of t': that is, the response 
when t' >> t will be the same as when t' = 0o. This statement 
is based on the Boltzmann superposition principle. In 
which case equation (2.22), derived for t '=  ~ ,  holds also 
for t'>> t. This point is easily chocked during the experi- 
ment: the experimentalist can measure the A0(t) response 
to successive jumps in AT and AF (at increasing values of 
t') and determine whether or not the response has become 
independent of t'. 

The specific experimental schedule is as follows. 
(i) A state of pseudo-equilibrium is set up at ( T -  AT) 

by applying a torque F for a time t'. 
(ii) A T-jump is imposed, (T-AT)-*T,  and the time 

dependence of A0 observed up to a time t(t ,g. t') after the 
T-jump (Fioure 1). 
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(iii) After the specimen has been at T for a sufficient 
time to stabilize, a torque jump is imposed, F ~ ( F + A F )  
and the time dependence of A0 observed up to a time t (the 
same value as in (ii)). Following a series of such experi- 
ments at different values of F, for specific values of t, a 
series of points is plotted (AO(t)/AT)r against 
F(A0(t)/A1-)r: these points for the different values of F and 
any value of t should lie on a line of slope (~ -/3°). Hence 
is determined if r° is known. 

The reader will note that it is to develop physical insight 
and for ease and economy of presentation that we have set 
up equation (2.19) showing the result of simultaneous 
torque and temperature jumps on the rotation: in the 
experiments this is not done, a step-function being 
imposed on T(at constant torque) or on F (at constant 
temperature). 

Tension 
For an elastomer, tension is an intrinsically non-linear 

form of deformation and is on this account more complex 
to analyse than shear. For  torsion we have restrained the 
treatment to linear deformation as the response to both 
the major stress tr and to the smaller step-function Aa 
(induced by both temperature and torque jump). We now 
consider the effect of small temperature and load jumps on 
the tensile elongation of an elastomer. 

If a strip of elastomer of length 10 and cross-sectional 
area A0 is subjected to a force F at temperature T, then 
according to the Gaussian network theory, the nominal 
stress a is related to ratio of the instantaneous length l to 
the initial length lo, 

l 

2=?o 

by, 

F r 2 a = ~ o  = G R f  ( ) (2.23) 

in which G~ is the relaxed shear modulus, 

G~= 1/J~ (2.24) 

and f(2) is given *'7, 

r ( 2 ) = ( 2 - 1 / 2  2) (2.25) 

The earlier thermoelastic work is perturbed by two 
problems 4'6'7. First, it is by no means certain that f(2) 
is given sufficiently precisely and for all elastomers by 
equation (2.25). Second, it is certain that all elastomers are 
viscoelastic to a greater or lesser extent. We tackle these 
two problems in succession. 

In order to aid the development of the theory assume 
first that there are no viscoelastic effects, that the impo- 
sition of a constant force F generates an extension ratio 2 
which is independent of time and is related to tr by 
equation (2.23), and that f(2) is a function of 2 which may, 
or may not be given by equation (2.25). If a temperature 
jump of AT is imposed at constant F, it follows from 
equation (2.23), after taking logs and differentiating that, 

.f ' (2)p 1 dl / d lo l  
- +f( LtodT 12dTJ (2.26) 

where, 
d f(2) 

f'(2) = d2 

and in which fl,] is the temperature coefficient of the cross- 
sectional area Ao, equal to (2/3)fl ° for an isotropic 
elastomer. It follows from equation (2.26), that since 
2 = lit o, 

' 4  
(2.27) 

in which fl~. is the temperature coefficient of the unstressed 
length lo, equal to (1/3)fl ° for an isotropic elastomer: flV is 
the temperature coefficient of length under constant force 
F. In order to proceed we require the term 2f'(2)/f(2). If f(2) 
is given by equation (2.25) then, 

2r( )=F'+21 
f(2) ]_2 3 -  l J  

so that, 

r22 + 2 7  F 
(2.28) 

This equation* was derived and first used by Shen 2. We 
reject it for two reasons: first it is based on equation (2.25) 
the applicability of which is under attack: second, because 
it assumes an elastic model with no time effects. 

It is fortunate that these simplifying, conventional and 
erroneous assumptions may be avoided by a direct and 
precise determination of the quantity [2f'(2)/f(2)], al- 
though f(2) itself cannot be determined so easily. From 
equation (2.23) the functions f(2) and f'(2) are, 

F 
f12) = A t ,  i ~ - o  ~ (2.29) 

, 1 / ~ \  
f (2) = A--~Rr ~ - ) ~  (2.30) 

The form of this equation anticipates its experimental 
adaptation in writing (AF/A2)r instead of (dF/d2)r. In the 
experiment small step-function changes are made, 
F--*(F + AF) and ( T -  AT)--. T. The magnitude of the AF 
etc. imposed, is sufficiently small to ensure the accuracy of 
the method, which is based on (AF/A2)r-(dF/d2)r  etc. It 
follows fi-om equations (2.29) and (2.30) that, 

2 f ' ( 2 )  2 fAF'~ 
f ~  = ~ - k ~ - ) r  (2.31) 

Substituting this in equation (2.27) yields, 

o 2 A F  f o 
(2.32) 

* Equation 15 of ref. 2 is erroneous: fl~ is equated with 2fl~/3. 
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Since J = l/l,, 

so that, 

which yields by definition of /I[, 

(2.33) 

(2.34) 

(2.35) 

Thus a plot of (Al/AT), - IBL against F(AI/AF)r should 
yield a straight line, passing through the origin and of 
slope (a -/Ii). 

We turn now to examine the effect of viscoelastic creep. 
Let the specimen be loaded by force F and let it creep for a 
long period of time t’. It will not be supposed that the 
equilibrium condition given by equation (2.23) is reached 
but that for short experimental times t, during which the 
specimen is to be perturbed by small step functions AT or 
AF, the change in length due to the primary creep imposed 
by the major force F is negligible. We will assume that 
under this condition the response of the specimen to small 
step-functions, AF or AT, is linearly viscoelastic: this point 
can be easily checked, and will be so checked in the 
experimental programme. Suppose that an F-jump, 
F+(F + AF) is imposed: this generates a jump in the stress 
and therefore a time dependent increment in the strain 
given, 

As(r) = A&“(t) (2.36) 

D”(r) is the tensile creep compliance relevant to the 
particular extension ratio 1 at which the experiment 
occurs: il depends on F and to a lesser extent on t’, the time 
permitted for primary creep: D”(t) depends on 1 and 
relates the stress increment Ag=AF/A, to the strain 
increment, 

Al(r) As(t) = I (2.37) 
10 

Note that Ao and A&) are referred to the unstressed 
dimensions A0 and I,. D”(t) may be measured by establish- 
ing pseudo-equilibrium at i and then performing iso- 
chronal experiments: for example by stressing by force F for 
t’= 100 ks and then measuring for t= 100 s values of As(t) 
for several different values of AF. Such experiments are 
described below both to establish the validity of equation 
(2.36) (that is, to establish that for small AF the specimens 
obey the equations of linear viscoelasticity) and to use the 
observed value of D’(t) in the interpretation of the 
viscoelastic experiment. 

When a small F-jump (AF <F) is imposed simul- 
taneously with a small T-jump the stress-jump is Ao, 

ACT AF AA, -_=------- 
o F A, 

The time dependent strain generated by Aa is from 
equation (2.36), 

As(r) = AeD;XT(t) (2.38) 

XT(t) is the relevant tension parameter, analogous to 
X’(t) for shear: note that, as in the neglect of the 
unrelaxed shear compliance in the torsion theory, we have 
neglected the unrelaxed tensile compliance. The fractional 
change in A, is induced by the T-jump is fi;AT, so that 

A@)=+$-_B(rATk:(r) 

D”, is obtained from equation (2.23) in the following way. 
Note that equation (2.23) relates the equilibrium or 

relaxed parameters c and A to the relaxed shear modulus. 
Differentiating equation (2.23) at constant temperature 
with respect to il yields, 

da 
z = G:f’(A) (2.40) 

Noting that dl=de and that at equilibrium, 

dE_Di 
da- R 

we have, 

in which we have used Jg= l/G;. It then follows from 
equation (2.39), that the time dependent strain pulse As(t) 
produced by a stress-jump (generated by a simultaneous F 
and T-jump) is, 

&@)=~~-/3~AT]~x:(t) (2.41) 

The T-jump will also produce a step-change in JR and 
this, by analogy with equation (2.19), will yield a total time 
dependent pulse in strain, 

AF 

1 

JR' +I:AT+aAT mX:@l (2.42) 

The two required experiments are the T-jump at constant 
F and the F-jump at constant T. The first is interpreted 
from equation (2.42), 

The second experiment is from equation (2.42), 

(2.44) 

It follows using equation (2.37) that, 

Note that the normal expansion change in length has not 
been taken into account: this will occur instantaneously at 
the T-jump (no time effect) and be of magnitude lfl: per 
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°C. It follows then, that at time t after the T-jump, the total 
change in length Al(t) per °C due to all causes is, 

equation (2.45). This result was anticipated:an example of 
the evidence is shown in Figure 6. 

AT Jr \ F JT 
(2.45) 

The adopted experimental analysis is a plot of 
(Al(t)/AT)r - lfl~, versus F(AI(t)/AF)r. 

The use of equation (2.45) in deriving a is as follows. 
(i) At ( T - A T )  a state of pseudo-equilibrium is estab- 

lished under tensile force F and then, following a T-jump 
(T-AT)~T,  the time dependence of AI is observed. 

(ii) After the creep rate at T following the T-jump has 
become vanishingly small (of order of the noise in the 
observations) a force-jump AF is imposed and the time 
dependence of Al observed. 

Following a series of such experiments at different 
values of F, for specific values of t, a series of points is 
plotted (Al(t)/AT)F-lfl~ against F(AI(t)/AF)T: these 
points, for the different values o fF  and for arbitrary value 
oft  (t < t ), should lie on a line of slope (a _2flo). Hence ~ is 
determined: fl~ is determined from the observed (AI/A T) at 
F - -0  and yields flo(= 3fl~). 

EXPERIMENTAL 

The experiments were performed on a crosslinked co- 
polymer of acrylonitrile and butadiene (Tg = -7°C).  The 
principal requirement was for an elastomer insensitive to 
to moisture with a Tg in an experimentally convenient 
temperature region and with excellent thermal stability 
and good mechanical strength. This polymer was used in 
earlier studies and its preparation is described elsewhere 8. 
It was obtained as a compression moulded sheet from 
which specimens for the shear and tensile experiments 
were cut. The torsion experiment was performed on a 
blade shaped specimen because (i) it could be cut from the 
identical sheet from which the tension specimen was cut: 
(ii) a thin-walled tube is unstable (it buckles) when twisted 
through other than very small values of (Off). 

The requirements of the experiment are to hold the 
specimen under constant temperature and force (or 
torque) with a facility to impose a step-function in either 
temperature or force (or torque). Our adaptation of the 
essentially standard procedures by which this may be 
done for torque and force will be outlined. For the step- 
function in temperature there is no doubt that the 
sharpest and most precise T-jumps are to be obtained 
with a flowing liquid in direct contact with the specimen: 
although highly successful with the right polymer (for 
example, polypropylene in water 9, temperature range 
20°C to 60°C), the liquid method is inflexible since in 
general liquid absorption will occur, or the desired 
temperature range is unattainable, or the flowing liquid 
stimulates vibration in a low modulus specimen--such as 
an elastomer. We turned therefore to flowing gas: the T- 
jump is not so sharp as is obtainable with liquid. The 
perturbation caused by the unsharp T-jump may be 
eliminated however, by taking the observation time t 
sufficiently long that the results are independent of t. For 
example, suppose the ramp time from (T-AT)J,  T is one 
minute (which is about the observed value). But after, it 
will be shown, 15 min the rate of creep is sufficiently low 
that the one minute ramp time can be neglected: the data 
points for t =  15, 20, 25, 30 min fall on a line given by 

Tensile experiment 
The specimen, A, was mounted between a fixed lower 

clamp, B, and the upper clamp, C, which was at the end of 
a pull-rod, D, Figure 2. The apparatus was made of Invar. 
The force F in the pull-rod was generated by a mass placed 
in pans 1 and 2, with mechanical advantages 1.0 and 2.0 as 
indicated. The mass in pan 1, exactly counterbalanced the 
system, so that when there was zero mass in pan 2 the force 
F in the pull-rod was negligible. In order to develop a state 
of pseudo-equilibrium a mass M/2 was placed in pan 2 
generating a force F = Mg in the pull-rod: under this force 
the specimen commenced to creep. The length change of 
the specimen was observed by the movement of the core E 
through the barrel of an LVDT, G. The barrel was held 
firmly by a collar H attached to a micrometer: rotation of 
the micrometer permitted movement of the collar and 
barrel vertically. The output voltage of the LVDT was 
measured on a chart recorder: for most observations a 
1.0mm movement of the core within the barrel was 
represented by a 288 mm deflection of the pen of the 
recorder (working on a scale 100 mV equals 200 mm 
deflection of the recorder). The calibration of the system 
was checked daily; the barrel and collar were moved using 
the micrometer with the core stationary. A core/barrel 
displacement of known magnitude was thus generated. 

Figure 2 
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Apparatus for measuring creep in torsion 
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The voltage change developed per mm displacement was 
observed and the system thus simply and directly 
calibrated. 

The principal experimental observation is Al(t) which 
was in the range 0 to 700/~m. After the specimen under the 
major force F had reached a state of pseudo-equilibrium 
the barrel was moved vertically--either by slipping it 
through the collar H, which was temporarily loosened for 
this purpose, or by turning the micrometer until the core 
was in the centre of the linear response range of the 
LVDT. The LVDT was then calibrated and the experi- 
ment initiated: the LVDT was used only in its linear range. 

The specimen was surrounded by an insulated thermal 
jacket. Thermostated air, K, was blown vertically up over 
the specimen. The flow was generated by a fan which blew 
the air over a bank of controlled heating elements and 
then through a mixing system which comprised a plate 
containing a large number of small holes and finally a flow 
deflector to give the flow a swirl, as well as an upwards 
movement. The temperature was measured with six 
thermocouples placed in the gas and distributed evenly 
along the specimen. 

The undeformed dimensions of the specimen were 
l=  101 mm a = 9.76 mm and b=  2.10 mm. It was glued 
into the clamps by means of Super-Glue: this system was 
recommended by the specimen manufacturers and per- 
formed perfectly. The temperature was never raised above 
55°C. At the termination of each experiment the length of 
the specimen was determined by lowering the thermal 
jacket and measuring the length with a rule. The max- 
imum value of /observed was 125 mm. For  a specimen at 
this length it was important to measure the temperature 
with six thermocouples to obtain a significant average. 

The specific experimental schedule was as follows. In 
the first experiment the specimen was loaded with 
M = 6 3 4 g  and left overnight at T close to 50°C. The 
following morning a suitable state of pseudo-equilibrium 
had been achieved. The LVDT was adjusted into the 
centre of its linear range and a T-jump then performed 
50.6°C~36.7°C, readings of AI being obtained con- 
tinuously on the chart recorder. The specimen was held at 
36.7°C and the slow temperature induced secondary 
creep observed for 30 min. The specimen was then left at 
36.7°C for several hours and a force-jump experiment 
then performed by placing a small mass of 9.025 g in pan 2 
to yield AM = 18.05 g: during this secondary creep experi- 
ment deflections were observed continuously for 30 min. 
This terminated experiment A. Subsequent experiments, 
labelled B to F, were then conducted in order with 
M--534,  474, zero, 334 and 634 g. It was considered a 
more rigorous test of the theory to vary the load in this 
way, rather than to start at the highest load and work 
systematically downwards to zero, or vice-versa. For  each 
experiment the specimen was loaded overnight to attain 
pseudo-equilibrium: the following day, as a rule, the T- 
jump experiment was performed in the morning and the 
F-jump in the afternoon. In each experiment the tempera- 
ture jump was from close to 50°C to close to 37°C. 

It is an assumption of the theory that when the 
specimen has been stretched to a state of pseudo- 
equilibrium under force F=Mg,  that for small step- 
functions AM the specimen is linearly viscoelastic. This 
hypothesis was to be checked inter alia by the success or 
failure of the derived equations (equation (2.45)). It seemed 
nevertheless appropriate to examine the linearity directly 

using two well known techniques. In the first the specimen 
having been loaded with M = 679 g, for 100 h at 37°C was 
subjected to a series of step-functions (small AM) loading 
experiments each of 100 s duration with a period for 
recovery in between. Three experiments were performed 
at each AM: the loads used ranged from AM = 20.24 g to 
AM = - 10.19 g. In the second test oflinearity a test of the 
Boltzman superposition principle was made by predicting 
a four minute creep curve obtained for AM -- 18.05 g from 
an experiment in which this same mass is applied to the 
specimen in the following intermittent sequence. At t = 0, 
AM is applied and left on for 1 min: it is then removed for 
1 min, re-applied for 1 min and removed for the final 
minute. From the values of Al(t) observed in this pulsed 
experiment the value of Al(t) observed in a constant AM 
experiment may be predicted. The agreement between a 
predicted and an observed 4 min Al(t) curve is an excellent 
test of the linearity of the specimen. In these experiments 
the length of the specimen was l = 127 mm and the values 
of A/(t) below 0.7 mm. 

Torsion equipment 
The torsional creep machine based on a design of 

McCrum and Morris 1°, is shown in Figure 3. The speci- 
men A is mounted between a fixed clamp B and a clamp 
C attached to a long torque tube, D. The torque tube is 
attached to a coil E, which lies in between the pole pieces 
(N and S) of a magnet and a core, F. A precise counter- 
balance G supports the assembly in a vertical position so 
that the tensile stress in the specimen is vanishingly small. 
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When a current i is passed through the (of order 200) turns 
of the coil a torque F is generated. The torque is, 

r = k i  (3.1) 

in which k is the coil constant. The specimen and the 
support wire H are twisted: the torque in the support wire, 
which is of extremely small cross section, can be neglected 
in comparison to that in the specimen. 

If a blade shaped specimen of length l, breadth a and 
thickness b is twisted by a constant torque F then, if the 
torque is applied at t =  O, 

lFJ(t) 
O(t) - (3.2) 

N 

(3.3) 

This equation holds for a specimen which is linearly 
viscoelastic and for small values of 0: the problem of large 
values of 0 and of non-linearity in the shear compliance, 
J(t), is avoided by keeping (O(t)fl) small. The specimen 
dimensions were a = 9.37, b = 2.32 and l=  52.9 mm. 

Suppose that a constant torque F is applied at T for a 
long period of time to reach a state of pseudo-equilibrium. 
A simultaneous jump in torque F ~ ( F  + AF) and tempera- 
ture ( T -  A T ) ~  T produces in a linear viscoelastic speci- 
men a time dependent increment in rotation, 

The argument for this equation follows that used for 
equation (2.19): there is greater complexity since the stress 
varies across the cross-section of the blade, but the 
methods are identical. It follows then that if the two 
experiments are performed, as described in the theoretical 
section, one in which a measurement is made of 
(AO(t)/AT)r and in the other a measurement of 
(AO(t)/AF)r, then (see equation (2.22)), 

A0(t)  A0(t)  , 
(3.5) 

since F=ki.  This equation holds only for values of t 
sufficiently long that the perturbation due to an unsharp 
T-jump has been eliminated. 

The rotation of the specimen is measured by reflecting a 
light beam from the concave mirror Q, Figure 3. If the 
throw of the optical lever is L, then a change in rotation A0 
is recorded as a deflection of the light spot Ax, 

The thermal-jacket for the torsion rig is shown in 
Figure 3. A thermostatted flow of pure nitrogen gas X, is 
generated by the method of Schwippert and van der 
Waa111. It flows into the specimen cavity through holes 
cut in the walls of the cavity, as shown. The temperature of 
the flowing gas is controlled by a large area platinum 
resistor (N) placed close to the specimen. The signal from 
the platinum resistor is monitored by a three term 
Eurotherm controller to bring the flowing gas to the 
correct temperature by means of a heater placed in the gas 
flow (not shown in Figure 3). The temperature of the 
specimen is obtained from another large area platinum 
resistor (P) placed in the gas close to the specimen. The 
Eurotherm controller is programmable in time and 
temperature and it was found that when a particular 
sequence of temperatures and times were set the tempera- 
tures were reproduced from experiment to experiment to 
within + 0.1 °C. 

The experimental programme for the torsion experi- 
ments was as follows. The T-jump was scheduled to occur 
between 53°C and 39°C. To initiate the experimental 
programme the specimen was heated to 39°C (unstressed) 
and held at that temperature for a short time to record the 
zero for F =0 :  a constant torque was then imposed by 
switching on a current of 0.80 mA. The torqued specimen 
was then heated to 72°C for 2 h and then cooled to 53°C 
for 2 h. The T-jump was then imposed, 53°C~39°C: the 
specimen was then held at 39°C for 1½ h (values of A0 
being recorded continuously using the Graphispot). Va- 
lues of A0(t) were obtained at 10, 15 and 20 min after the 
T-jump. The torque-jump experiment was then perfor- 
med: whilst still at 39°C the current was dropped from 
0.80 to 0.70 mA and the resulting creep recovery observed 
with the Graphispot. Values of A0(t) were obtained at 10, 
15 and 20 rain after the torque jump. The data points were 
then plotted according to equation (3.5). The specimen 
was then cooled to room temperature and left overnight 
with the torque current at 0.75 mA. The next day a 
temperature cycle, 1 h at 72°C, 2 h at 53°C with a T-jump 
to 35°C was followed with the current maintained at 
0.75 mA: the torque-jump experiment was performed 
after 2 h at 39°C by dropping the current from 0.75 to 
0.69 mA, the rotation being continuously recorded on the 
Graphispot. In this way a series of measurements at 
different values of i was obtained of (AO(t)/AT) i and of 
i(AO(t)/Ai)T and plotted according to equation (3.5). The 
criterion in selecting times and temperatures was the 
essential time independence of 0 before imposing the T- 
jump or the torque jump. The current was left on 
overnight, or over the weekend, at the value scheduled for 
the next experiment so as to facilitate the obtaining of the 
required state of pseudo-equilibrium. 

Ax 
A O = - -  

2L 

The value of L used was 1820 mm so that, 

A0=2.747 x 10-4Ax 

The measurements of  Ax were obtained using a Graphi- 
spot recorder. The position of the light spot was recorded 
continuously on chart paper throughout the course of the 
experiment. 

RESULTS 

Tensile experiments 
Data for a typical experiment (Experiment B with 

M = 534 g) is shown in Figure 4, which shows the time 
dependence of: 

(a) (AI(t)/AT)F: this is the change in length at time t after 
the T-jump (51.4°C~36.2°C) divided by AT ( -  15.2°C). 
The data recorded before 0.9 ks is not considered reliable, 
as will be illustrated below, because of the unsharp 
temperature step-function. 
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Figure 4 Results of T-jump and F-jump experiments for specimen 
under major load M = 534 g: (Al(t)/AT)r is the change in length at time t 
at~er the T-jump divided by AT= - 15.2°C (51.4°C$36.2°C): (AI(t)/AF)T 
is the change in length at T = 36.2°C at time t after the F-jump divided by 
the value of AF. The order of experimentation was T-jump, then a ~ 10 
ks delay for the zero to settle, followed by the F-jump 

(b) (AI/AF)r: this is the change in length at time t 
after the force-jump (MgT(M+AM)g) divided by 
AF=oAM=9.81 x 18.05 N. 

It will be seen in Figure 4 that the creep generated by the 
T-jump continues significantly up to 6 ks after the T- 
jump. For this reason the force-jump experiment has to be 
delayed until of order 10 ks after the T-jump so that the 
zero is well defined. The deflections in the two experiments 
were of the same order of magnitude (at t = 1.8 ks, 600/~m 
and 642 #m in the T-jump and F-jump experiments 
respectively). For this particular value of the major mass 
(M= 534 g) linearity was checked in two subsidiary F- 
jump experiments using AM=9.812g and then 
AM=27.86 g. The specimen was permitted to recover 
after each AM experiment with AM removed. For the 
three values of AM used, 9.812/18.05/27.86 g, the values of 
AI/AM at 0.3 ks were (in #m/g), 

324 / 601 / 926 
9.81-2 / 18~/27~-.~ = 33.0/33.3/33.2 (1) 

The overall length of the specimen under this value of 
M = 534 g and with the described thermal history (over- 
night T ~  50°C) was l= 122 mm. The true strains were 
therefore, at 0.3 ks in the three AM experiments, 

0.324/0.601/0.926 
/ ~ / ~  = 0.0026/0.0049/0.0076 (IX) 

It is clear that the specimen is behaving in a linear manner 
(I) and that this is, perhaps, not surprising since the strains 
are well under 0.01 (II). 

The time dependence of (AI/A T)F and (AI/AF)T is shown 
in Figure 5 for the experiments A, B, C, E and F: 
experiment D was a thermal expansion experiment with 
F=0.  As the major load increases (from M=334g  to 
M=634 g) at a fixed time, both (AI/AT)F and (Al/AF)r 
increase: at fixed M both quantities show a slow increase 
(creep) with time. 

In the governing equation (2.45) the major variable is F 
but nevertheless, data plotted at constant F and varying t 
should conform to equation (2.45). For experiment B 
values of (Al(t)/AT)F-lfl~ are plotted in Figure 6 against 
F(Al(t)/AF)T for values of t from 5 to 30 min. For values of 
t from 15 to 30 min the data conform well to the plotted 
(least-squares) straight line. This line is of slope, 

(~ _~flo) = -280.3 -t- 27.2 x 10- s°C- 1 

we return later to consider this measure of~. It is clear that 
the rational prediction of equation (2.45) is obeyed for 
values of t in excess of 15 min. Below 15 min the data 
depart increasingly from the predicted linear relationship 
as t tends to lower and lower values. This departure is due 
to the lack of sharpness in the T-jump. This is supported 
by the data lying above the predicted line: because of the 
ramp in temperature (T-AT)~ T, A/(t) does not attain at 
values of t below 15 min the value it would have done if 
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Figure 5 Time dependence of (AI(t)/AT)F and (AI(t)/AF) r in the five 
experiments. Values are taken from the data at 0.9, 1.2 and 1.8 ks for 
plotting according to equation (2.46). In the experiments the constant 
loads were 634 g (A), 534 g (B), 474 g (C), 334 g (E) and 634 g (F) 
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Figure 6 Values of  (Al(t)/AT)f-fl~l plotted against F(AI/AF)T for 
values of t in the range 5 to 30rain: experiment B, M = 5 3 4 g ,  
A M =  18.05 g, A T =  - 15.2°C. The systematic error due to the unsharp 
T-jump increasingly reduces as t moves from 5 to ] 5 min. At times above 
15 rain the data conform to the linear result predicted by equation (2.45). 
The line drawn is the least-squares fit to the data (15 min < t < 30 min) 
and is of slope (c¢-2fl°/3)= -280.3+27.2 x 10 -5 °C -~ 
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the step-function had been sharp. For  t greater than 
15 min the rate at which AI increases with t becomes 
sufficiently low, that the systematic error due to the 
unsharp ramp becomes negligible. 

A plot of (AI(t)/AT)r- Ifl~. against F(AI(t)/AF)-r is given 
for experiments A, B, C, E and F in Figure 7 for values of 
t =  15, 20 and 30 min: the single point (AI/AT)o from 
experiment D at F = 0  is also plotted. The line plotted 
through the points was obtained by least-squares and 
yields a slope which gives according to equation (2.45), 

a-~f l °= -313 .2+2 .5 ,  x 10-5°C -1 

The value of (AI/AT)o leads to a determination of fl~, 

fl~= 15.8 x 10-s°C -1 

Assuming isotropy (flo= 3fl~) 

flo = 47.4 x 10- soc - 1 

The value of ~ from this determination is therefore, for 
mean temperature T =45 °, 

~=  -281 .6_2 .5 ,  x 10-5°C -1 
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Figure 8 Linearity test showing an isochronal plot of elongations Al(t) 
for t = 20 and 100 s plotted against stress a: temperature 37°C: specimen 
loaded for 100 h at 37°C by major mass M = 679 g before initiation of the 
experiments: the s t r e s s A a = g A M / A  o, A o being the undistorted cross- 
section 

The quoted errors record the standard error of the slope in 
Figure 7 and do not include other sources of error. We 
return to the discussion of errors later but it can be stated 
at once that the most likely cause of error is the 
determination of AT, the magnitude of the T-jump. It can 
be determined precisely at a point but the question is the 
averaging of the T-jump over the volume of the cavity 
occupied by the specimen. 

The result of a linearity test at 37°C is shown in Figure 
8. The major mass was M = 679 g and the length of the 
specimen was l=  127 mm. The required state of pseudo- 
equilibrium was achieved by maintaining the specimen at 
37.7°C for 100 hours before the first AM experiments were 
initiated. Figure 8 shows a plot of the generated changes in 
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F i g u r e  7 Plot of(Al(t)/AT) r - f l~ l  against F(AI(t)/AF) T with values of t 
taken at 0.9, !.2 and 1.8 ks for five experiments. The data measured at 
F = 0  (thermal expansion data) is also plotted. The slope of the line, 
according to equation (2.45), is by least-squares 
(~ -2 f l ° /3 )= -313 .2+2 .5 ,  x 10-s°C -1. The linearity predicted by 
equation (2.45) at varying F and t is observed 
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Figure 9 Test of Boltzmann superposition principle. Specimen loaded 
with major mass M = 6 7 9  g for 100 h at 37°C to attain state of pseudo- 
equilibrium. One minute pulses of AM = 18.05 g (0~:~0 s and 120-180 s) 
produced values of Al(t), data X. Predicted values of Al(t) by Boltzmann 
superposition principle for a continuous application of AM = 18.05 g, 
data Y. A determination of Al(t) for a continuous application of 
AM = 18.05 g, data Z 

length at t = 2 0  and 100 s after loading plotted against 
stress (gAM divided by the undistorted cross section of the 
specimen). It will be seen that the specimen exhibits 
excellent linear behaviour over the range of loads and 
extensions used. These loads and extensions were repre- 
sentative of the values in the experiments shown in Figure 
5. 

The results of the second test of linearity is shown in 
Figure 9. According to the Boltzmann superposition 
principle the relationship between the pulsed load and 
continuous load experiments is as follows. Consider the 
strains in the two experiments at times, x, (x + 60), (x + 120) 
and (x+  180) for x < 6 0  s. Let the strains in the pulsed 
experiment at these times be p, q, r and s. Let the strains in 
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the continuous load experiment at the same times be P, Q, 
R and S. According to the superposition principle, 

ments yields, 

• = -261.9+4.1,  x 10-5°C -1 
P=p Q=p+q 

(4.1) The limits reflect only the deviations on the slope taken 
R = q + r S = r + s from the least squares analysis. The T-jump was 

52.0°C~37.4°C which yields a mean temperature T = 45°C 
The values of Al(t) obtained in the pulsed experiment are for this value of cc 
given by data X, Figure 9. The prediction from data X 
according to equation (4.1) is given by data Y. The test of 
data Y is the experimental result of the continuous 
application of AM over 4 min, and this is given by data Z. 
The agreement between data Y and Z is excellent. We 
conclude that for small values of AM, such as that used 
(18.05 g with M = 679 g) the elongations produced accord 
with the Boltzmann superposition principle. 

Torsion 
A plot of(AO/AT)r versus F (AO/AF) r is shown in Figure 

10. The data shows points taken at t = 1.20 ks after the T- 
jump or the torque-jump. The T-jump was 52.0°C$37.4°C. 
As will be seen the data conform closely to the linear 
prediction of equation (2.22). From a least squares fit the 
slope yields, 

0 t - r ° =  -309.3_+4.1, x 10-5°C -1 

Using the value of r° determined in the tensile experi- 
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Figure 10 Plot of(AO(t)/AT)T against F(AO(t)/AF)T for t =  1.2 ks. The 
data at F = 0  represents a small temperature induced zero shift at zero 
torque. The slope of the line according to equation (2.22), is by least- 
squares ( ~ -  fl°) = - 309.3 _+ 4.1, x 10°C- *. The linearity predicted by 
equation (2.22) for varying F is observed 

DISCUSSION 

The objective of our investigation has been the establish- 
ment of a rigorous theory of thermoviscoelastic defor- 
mation for an elastomer yielding a reliable measurement 
of g--and hence of x and f Jr--together with a test of the 
theory by experiment. The crucial reported tests are of: 

(1) The relationship in tension between 
(Al(t)/AT)F-fl~l(t) and F(AI(t)/AF)T, which should be 
linear for both arbitrary F and arbitrary t. 

(2) The relationship in torsion between (AO(t)/AT)r and 
F(AO(t)/AF) r, which should be linear for both arbitrary F 
and arbitrary t. 

(3) The observed magnitude of 0t: the value should be 
independent of the observation method, tension or tor- 
sion, to within the error of the experiments. 

Concerning (1) there is no doubt at all of the linearity 
for arbitrary F, as shown in Figure 7. The range of values 
of). lay between 1.0 and 1.241 As shown in Figure 6 when 
the perturbation due to the unsharp T-jump has dimin- 
ished to the point of being negligible (t > 15 min) the data 
at varying t and constant F fit reasonably well the slope 
predicted from the data with varying F: the slopes in 
Figures 7 and 6 are respectively in units of 10-5°C -1, 
-313.2___2.5 and -280.3_-+27.2. The plot with t as 
variable at (constant F) does not give a reliable slope (note 
the standard error of _+ 27.2) since for the experimentally 
valid values of t (above 15 min) the rate at which Al(t) 
changes with t is so slow that experimental problems are 
considerable. These problems include minute shifts of the 
zero (due to previous thermal and mechanical history) 
and small temperature drifts (below 0.1°C) which--  
particularly at high F when the thermoelastic effect is 
large--can cause significant error. The most reliable 
figure for the slope comes, of course, from Figure 7 
(standard error _-+2.5). The significance of the data with 
time as variable is that it is qualitatively consistent with 
the view that time has been taken into account correctly. 

The stresses in the tensile experiments were kept to 
relatively low values to facilitate comparison with the 
torsion experiments. The tension experiments were con- 
ducted at primary stresses (FlAg) in the range 0 to 
300 kN/m 2. In torsion the primary shear stress varies 
from 0 at the centre of the cross section to a maximum, 
a . . . .  at the centre of the wide edge: the greatest value of 
O'ma x was 6 kN/m 2. The stresses generated in the step- 
function experiments were much closer in magnitude: in 
the tensile experiment in all cases this stress was 
AF/Ao=8.60 kN/m2: the maximum value of the step- 
function stress in the torsion experiments, was 
Atrm~x ~ 1 kN/m 2. It is these latter stresses generated in the 
step-function experiments which determine whether or 
not the specimen response is linearly viscoelastic. It will be 
the subject of additional research in the future to de- 
termine if the equation of state, (equation (2.23)) holds at 
primary stresses above 300 kN/m 2 (2 > 1.24). 
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The tensile and torsion values of ~ (in units of 
10 - s°C - 1, 281.6 + 2.5 and 261.9 + 4.1 respectively) differ 
by 7~,  an amount  which exceeds the quoted errors which 
come from the standard errors in the slopes (Figure 7 and 
10). There are of course other errors. Of these most 
important is doubtless the systematic error in controlling 
and recording temperature. It is easy to control the 
temperature and to measure it at a point in a cavity: it is 
much more difficult to integrate these functions over the 
cavity volume. In the two experiments with different 
thermal systems and doubtless different temperature 
distributions within the cavities it is likely that the 
recorded values of AT were systematically in error from 
the true or integrated AT by amounts which would 
explain a good proportion of the 7~o discrepancy in the 
values of ~. 

In the first experiment in torsion reported elsewhere 1, 
the value of t used in the step-function experiments was 
10 min. It became clear during the present investigation 
that this time was too short. At 10 min after the T-jump 
the effect of the unsharp jump still perturbs the torsion 
data. The effect is exactly analogous to the effect in tension 
shown in Figure 6. It was found in torsion that at 
t =  20 min the perturbation due to the unsharp T-jump 
was erased and this was the time adopted. It is this change 
from t =  10 min to t = 2 0  min which accounts for the 
~ 15~o divergence in the values of~ observed in the earlier 
torsion work and that reported here: in the earlier work 
measurements were not taken at T = 45°C: extrapolation 
of the data at lower temperatures however, gives at 
7 '=45°C, a - , - - 2 2 5 x 1 0 - 5 ° C  -1. The torsion experi- 
ments are not well suited to experiments with t as a 
variable because the total T-jump induced rotation is very 
low at the small values of primary torque which may be 
applied in the equipment: if the primary torque is too high 
the torque inducing coil rotates out of the gap between 
magnet and core (Figure 3). 

The large difference between the Shen formulation and 
that of this paper may be quickly illustrated. Shen's 

equation (equation (2.28)) is, 

o [ - ) '3  - -  1" ]  o 
(5.1) 

Values of 2 were computed at t =  15, 20 and 30 min by 
computing according to 2 = (l + Al(t))/lo: fl[ was computed 
according to fl[=(1/l)(Al(t)/AT): l is the length of the 
specimen in the pseudo-equilibrium state observed to 
+0.5 mm. It will be seen in Figure 11 that the plot of fly 
against (23 - 1)/(23 + 2) has serious defects. The first is that 
there is considerable scatter. This could be due to the 
observation of 1. In our experiments the important 
determination was of Al(t) (following T-jump and F-jump) 
and this quantity was measured very accurately. The 
value of I was required with less accuracy and this was 
done as indicated in the Experimental section. The scatter 
could well be due to this cause but there are other 
possibilities. The Shen formulation does not account for 
time in any way. As t moves from 15 to 30 min fl[ changes 
appreciably, as indicated in Figure 11: there is no change 
detectable in (~3_ 1)/(23 +2) over this time interval. 

It is otherwise when plotted according to the form- 
ulation of this paper. Dividing both sides of equation 
(2.45) by l yields, 

( F'~f Al(t)'~ . . . .  (5.2) 

A plot of fl[(t) against (F/l)(Al(t)/AF) is shown also in 
Figure I 1. Note that as ff,(t) changes with t (each value of 
F has 3 recorded points, at t =  15, 20 and 25min), 
(F/l)(Al(t)/AF)r changes also, so that flF(t) follows one line 
for arbitrary F and arbitrary t. The slope of the line in 
Figure II  according to the Shen equation yields 

a - 2 f l  ° = -244.6  x 10- 5°C - ' 

yielding 
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Figure 11 Plot of flL F according to the Shen equation (equation (5.1)) 
3 3 5 1 g against ()~ - 1)/(2 + 2): slope -225.8 x 10- °C-  . Plot offlL(t ) against 

(F/I)(AI/AF)T according to formulation of this paper (equation (5.2)): 
s l o p e - 3 1 3 . 2 x  lO- 5. Six values of F (including F =O): for each value of F 
data at three values of t, ( 15, 20 and 30 rain). Note that the data follow 
equation (5.2) for arbitrary F and arbitrary t, a quality not shown when 
plotted according to the Shen equation 

~t= -213 .0  x 10- 5°C- ' 

This is a value quite different to those measured according 
to equation (2.45) (in tension) and to equation (2.22) (in 
torsion). It is clear that the Shen equation is invalid. It 
assumes that f(2) is given by equation (2.25), the Gaussian 
model, and this is not correct. We make no comments on 
the inadequacy of the Shen formulation in accounting for 
viscoelastic effects, which it is not designed to accomplish, 
and quite clearly does not. 

The magnitude of K is very sensitive to errors in ~t, since 
K depends on the difference between two quantities, ct and 
T -1, of  comparable magnitude, equation (1.4). For  
example for the tension value of c t = - 2 8 1 . 6 x  10-5°C, 
obtained at temperature 45°C with fl°/3 = 15.8 × 10-5, 

= [ - 281.6 + 314.3 - 15.8] 10- s o C -  1 

= 16.9 x 10- s 

The Shen value of ct yields, 

t¢ = [--  213.0 + 314.3-- 15.8] 10-5°C -1 

=85.5x 10-5 
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Of these two, for the reasons stated, the first is the most 
reliable. 

There is no doubt that the thermoelastic experiment is, 
in principle, capable of deriving the highly significant 
macromolecular parameters 0t, ~c and fd f and  this fact has 
been known for many years. That  small, often almost 
imperceptible, creep effects should imperil this highly 
desirable harvest doubtless lead to a certain exasperation, 
and the adoption of what can now be seen as inadequate 
methods. It could be said that the theory of rubber 
elasticity has been well-serviced and that it outran the 
slower development of thermoviscoelasticity. This was 
possibly inevitable since the intra-molecular phenomena, 
which are treated by the theory of rubber elasticity, are of 
simpler origin than the inter-molecular phenomena 
which control viscoelastic processes. The way ahead is 
pointed in this paper. It could be that others will find 
superior methods but the principle will remain: the 
deformation processes of elastomers, no matter how 
induced, are of thermoviscoelastic origin and this must be 
the basis of new experimental initiatives. 

C O N C L U S I O N  

The methods of thermoviscoelasticity are shown to 
permit a precise determination of ~, the temperature 

dependence of the mean-square end-to-end length of a 
macromolecule. The basis of the experiment is the 
equivalence of the creep effects produced by T-jump and 
by force-jump. The force-jump experiment is used to 
calibrate the T-jump and so yield = the temperature 
coefficient of the relaxed shear compliance. The value of r 
is then obtained from ~ using the theoretical result for the 
relaxed shear compliance. Conventional determinations 
of K and o f f f f f a re  in error because the experiments are 
perturbed by viscoelastic effects. 
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